Problem 1-5

Determine the resultant internal loadings acting on the cross section at point B.

Prob. 1-5

Solution

The fixed support at A prevents horizontal motion, vertical motion, and rotational motion. As a result, there are three unknowns in the free-body diagram of the beam shown below.

The distributed force is treated as a single resultant force applied through the centroid of the triangle,

$$
\frac{2}{3}(15 \mathrm{ft})=10 \mathrm{ft}
$$

from point C, with a magnitude given by the area of the triangle,

$$
\frac{1}{2}\left(60 \frac{\mathrm{lb}}{\mathrm{ft}}\right)(15 \mathrm{ft})=450 \mathrm{lb} .
$$

Use the equations of equilibrium to determine the reaction forces, taking the sum of the moments about point A.

$$
\begin{aligned}
\sum F_{x} & =A_{x}=0 \\
\sum F_{y} & =A_{y}-450=0 \\
\sigma^{+} \sum M_{A} & =M_{a}-(450 \mathrm{lb})(5 \mathrm{ft})=0
\end{aligned}
$$

Solving this system of equations yields

$$
\begin{aligned}
A_{x} & =0 \\
A_{y} & =450 \mathrm{lb} \\
M_{a} & =2250 \mathrm{lb} \cdot \mathrm{ft}
\end{aligned}
$$

Now that the reactions at A are known, the resultant internal loadings acting on the cross section at B can be determined with the method of sections. Since it's simpler, choose the section of the beam from B to C.

This $288-\mathrm{lb}$ force is the resultant force of the part of the distributed force from B to C. The height of the triangle at B is found using similar triangles.

The force's magnitude is the area,

$$
\frac{1}{2}\left(48 \frac{\mathrm{lb}}{\mathrm{ft}}\right)(12 \mathrm{ft})=288 \mathrm{lb}
$$

and the force passes through the centroid, which is

$$
\frac{2}{3}(12 \mathrm{ft})=8 \mathrm{ft}
$$

from C. Use the equations of equilibrium to find the internal loadings at B.

$$
\begin{aligned}
\sum F_{x} & =-N_{b}=0 \\
\sum F_{y} & =V_{b}-288=0 \\
\sigma^{+} \sum M_{B} & =M_{b}-(288 \mathrm{lb})(4 \mathrm{ft})=0
\end{aligned}
$$

Solving this system of equations yields

$$
\begin{aligned}
N_{b} & =0 \\
V_{b} & =288 \mathrm{lb} \\
M_{b} & =1152 \mathrm{lb} \cdot \mathrm{ft} .
\end{aligned}
$$

The reactions at A actually weren't necessary.

